skip to main content


Search for: All records

Creators/Authors contains: "Jones, Bradley D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Fern Cave System, developed in the western escarpment of the Southern Cumberland Plateau of the Interior Low Plateau karst region in Northeastern Alabama, USA, is a global hotspot of cave-limited biodiversity as well as home to the largest winter hibernaculum for the federally endangered Gray Bat (Myotis grisescens). We combined the existing literature, museum accessions, and database occurrences with new observations from bioinventory efforts conducted in 2018–2022 to generate an updated list of troglobiotic and stygobiotic species for the Fern Cave System. Our list of cave-limited fauna totals twenty-seven species, including nineteen troglobionts and eight stygobionts. Two pseudoscorpions are endemic to the Fern Cave System: Tyrannochthonius torodei and Alabamocreagris mortis. The exceptional diversity at Fern Cave is likely associated with several factors, such as the high dispersal potential of cave fauna associated with expansive karst exposures along the Southern Cumberland Plateau, high surface productivity, organic input from a large bat colony, favorable climate throughout the Pleistocene, and location within a larger regional hotspot of subterranean biodiversity. Nine species are of conservation concern, including the recently discovered Alabama cave shrimp Palaemonias alabamae, because of their small range sizes, few occurrences, and several potential threats. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. LaRock, Christopher N. (Ed.)
    ABSTRACT Streptococcus sanguinis is a common cause of infective endocarditis (IE). Efforts by research groups are aimed at identifying and characterizing virulence factors that contribute to the ability of this organism to cause IE. This Gram-positive pathogen causes heart infection by gaining access to the bloodstream, adhering to host extracellular matrix protein and/or platelets, colonizing the aortic endothelium, and incorporating itself into the aortic vegetation. While many virulence factors have been reported to contribute to the ability of S. sanguinis to cause IE, it is noteworthy that type IV pili (T4P) have not been described to be a virulence factor in this organism, although S. sanguinis strains typically encode these pili. Type IV pili are molecular machines that are capable of mediating diverse virulence functions and surface motility. T4P have been shown to mediate twitching motility in some strains of S. sanguinis , although in most strains it has been difficult to detect twitching motility. While we found that T4P are dispensable for direct in vitro platelet binding and aggregation phenotypes, we show that they are critical to the development of platelet-dependent biofilms representative of the cardiac vegetation. We also observed that T4P are required for in vitro invasion of S. sanguinis into human aortic endothelial cells, which indicates that S. sanguinis may use T4P to take advantage of an intracellular niche during infection. Importantly, we show that T4P of S. sanguinis are critical to disease progression (vegetation development) in a native valve IE rabbit model. The results presented here expand our understanding of IE caused by S. sanguinis and identify T4P as an important virulence factor for this pathogen. IMPORTANCE This work provides evidence that type IV pili produced by Streptococcus sanguinis SK36 are critical to the ability of these bacteria to attach to and colonize the aortic heart valve (endocarditis). We found that an S. sanguinis type IV pili mutant strain was defective in causing platelet-dependent aggregation in a 24-h infection assay but not in a 1-h platelet aggregation assay, suggesting that the type IV pili act at later stages of vegetation development. In a rabbit model of disease, a T4P mutant strain does not develop mature vegetations that form on the heart, indicating that this virulence factor is critical to disease and could be a target for IE therapy. 
    more » « less
  3. null (Ed.)
    Conjugate vaccines are among the most effective methods for preventing bacterial infections. However, existing manufacturing approaches limit access to conjugate vaccines due to centralized production and cold chain distribution requirements. To address these limitations, we developed a modular technology for in vitro conjugate vaccine expression (iVAX) in portable, freeze-dried lysates from detoxified, nonpathogenic Escherichia coli. Upon rehydration, iVAX reactions synthesize clinically relevant doses of conjugate vaccines against diverse bacterial pathogens in 1 hour. We show that iVAX-synthesized vaccines against Francisella tularensis subsp. tularensis (type A) strain Schu S4 protected mice from lethal intranasal F. tularensis challenge. The iVAX platform promises to accelerate development of new conjugate vaccines with increased access through refrigeration-independent distribution and portable production. 
    more » « less